Kouji WADA Yoshiyuki AIHARA Tomohide KAMIYAMA Osamu HASHIMOTO
In this paper, the method of locating multiple transmission zeros by the tap-coupling technique is described for bandpass filters (BPFs), using short-ended λ/2 resonators and its application to a duplexer. First, the method of locating the transmission zero using the short-ended λ/2 resonators is examined with various excitation methods. We focus on four types of short-ended λ/2 resonators: the end-coupling type, tap-coupling type, capacitive tap-coupling type and inductive tap-coupling type. Secondly, the BPFs based on the basic characteristics of the respective resonators are proposed and designed on the basis of a general filter theory with narrow band approximation. Lastly, we propose and design new duplexers consisting of the proposed BPFs. The results lead to the conclusion that the basic characteristics of the short-ended λ/2 resonators are useful for realizing a BPF with multiple transmission zeros and a high-performance duplexer fabricated without increasing the number of elements.
Zhewang MA Toshiyuki ASANO Yoshio KOBAYASHI
A general circuit model of a filter having one cross coupling path is analyzed, and a new theory is developed for the design of a filter with transmission zeros in its stopband. By using the derived formulas, the reactance element values in the cross coupling path are determined readily. The transmission zeros can thus be assigned at desired frequencies. Various design examples are provided, together with simulated results, which validate the proposed theory.
The aim of this study is to examine the effectiveness of various open-ended resonators. According to the required filter responses, the application to microwave filters based on presented open-ended resonators is systematically examined as well. First, the resonance property of the basic open-ended resonator is discussed based on even-and odd-mode analysis. The intrinsic property of a tapped open-ended resonator is also discussed here. Second, the basic properties of a stepped impedance resonator (SIR) and a loaded-element resonator are examined theoretically for improvement of spurious responses and the dual-passband response. The basic operations of these resonators are also explained based on even- and odd-mode analysis. Examples for filter applications based on presented resonators are also provided. We found that the intrinsic properties of the open-ended resonators are very useful for practical filter responses.